Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37687493

RESUMO

In this study, novel V2O5-decorated garlic peel biochar (VO/GPB) nanocomposites are prepared via the facile hydrothermal technique. As-synthesized VO/GPB is characterized by various spectroscopic and analytical techniques. The surface morphology of the as-prepared samples was predicted by SEM analysis, which shows that the block-like V2O5 was uniformly decorated on the stone-like GPB surface. The elemental mapping analysis confirms the VO/GPB composite is composed of the following elements: C, O, Na, Mg, Si, P, K, and V, without any other impurities. The photocatalytic activity of the VO/GPB nanocomposite was examined by the degradation of methyl orange (MO) under the irradiation of visible light; 84% degradation efficiency was achieved within 30 min. The reactive oxidative species (ROS) study reveals that hydroxyl and superoxide radicals play an essential role in MO degradation. Moreover, the antioxidant action of the VO/GPB nanocomposite was also investigated. From the results, the VO/GPB composite has higher antioxidant activity compared to ascorbic acid; the scavenging effect increased with increasing concentrations of VO/GPB composite until it reached 40 mg/L, where the scavenging effect was the highest at 93.86%. This study will afford innovative insights into other photocatalytic nanomaterials with effective applications in the field of photocatalytic studies with environmental compensation.

2.
Biomimetics (Basel) ; 8(4)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37622935

RESUMO

Selective laser sintering (SLS) is an additive manufacturing process that has shown promise in the production of medical devices, including hip cups, knee trays, dental crowns, and hearing aids. SLS-based 3D-printed dosage forms have the potential to revolutionise the production of personalised drugs. The ability to manipulate the porosity of printed materials is a particularly exciting aspect of SLS. Porous tablet formulations produced by SLS can disintegrate orally within seconds, which is challenging to achieve with traditional methods. SLS also enables the creation of amorphous solid dispersions in a single step, rather than the multi-step process required with conventional methods. This review provides an overview of 3D printing, describes the operating mechanism and necessary materials for SLS, and highlights recent advances in SLS for biomedical and pharmaceutical applications. Furthermore, an in-depth comparison and contrast of various 3D printing technologies for their effectiveness in tissue engineering applications is also presented in this review.

3.
Environ Res ; 224: 115521, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36805895

RESUMO

Novel porous nanospheres from areca nuts (ACNPs) were synthesized via one-step pyrolysis without the use of any chemical treatment and the materials were used as adsorbents for the removal of cationic methylene blue (MB) and anionic methyl orange (MO) as well as their binary mixtures. Around, 6-7 tonnes of areca nut biowaste is generated every year which are then burnt due to their slow rate of decomposition resulting in higher carbon footprints. Biosorbents are generally a preferable alternative for dye adsorption but involve chemical modification for surface enhancement and complex sample treatment. In this work, ACNPs, were investigated for their efficiency in the raw form and were characterized by SEM, EDS, FTIR, XRD, and BET techniques before and after subjecting to the dye adsorption studies. The BET analysis of the adsorbents showed a high specific surface area of 693.8 m2/g when prepared at 1000 °C, while the N2 adsorption-desorption plot showed type-IV isotherm, suggesting the microporous nature of the carbon matrix. Batch equilibrium studies showed the removal efficiency of >95% for both the dyes and their binary mixtures under the optimum conditions of 0.15 g/L dosage, 10 µM concentration and contact time of 70 min. Due to the synergistic effects of the binary dyes, higher removal efficiency of MB compared to MO was observed in the binary mixture. Adsorption results were tested using Langmuir, Freundlich, Temkin, Redlich-Peterson, and Elovich isotherms to assess the best fit of the models. The qm value of MB was found to be 97.37 mg/g, while that of MO was 71.22 mg/g which is higher compared to individual dye components having lower values of 86.12 mg/g and 50.35 mg/g, respectively. Extended Langmuir and Jain and Snoeyink isotherms were used for binary data interpretation. The kinetic results showed good agreement with the Pseudo-second order equation, indicating internal diffusion. The possible mechanism involved electrostatic and á´¨-á´¨ interactions between the dye molecules and ACNPs. This approach is comprehensible and cost effective and can be utilized for dye removal in textile industries.


Assuntos
Nanosferas , Poluentes Químicos da Água , Carbono/química , Corantes/química , Areca , Adsorção , Porosidade , Nozes/química , Análise Custo-Benefício , Poluentes Químicos da Água/análise , Cinética , Azul de Metileno/química , Concentração de Íons de Hidrogênio
4.
Chemosphere ; 316: 137851, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36642130

RESUMO

The heavy metal contaminant arsenic exist in the form of arsenite (As(III)) and arsenate (As(V)) ions. These ions are highly carcinogenic that are usually present in the ground water. To date, most of the designed polymer inclusion membrane (PIM) involved only about separation without differentiating the oxidation states. Thus, there is a research gap on separation of element with different oxidation states. Thus, this study addresses such research gap which have been not explored previously. To extract such ions from water, the present study involves fabrication of PIM by varying the compositions of the base polymer, carrier and plasticizer. Also effect of the strip solution, and transport properties were studied. High performance membrane was obtained with 50% (w/w) Aliquat 336 and 50% (w/w) Cellulose triacetate (CTA). The production of 1 m2 of PIM may cost approximately 0.08-0.16$. Also, we have combined the separation capacity of polymer inclusion membrane (PIM) with the sensitivity and elemental detection using atomic absorption spectrometry (AAS) to detect and separate As(III) and As(V). AAS is limited to detecting only elemental arsenic (As) and does not distinguish between As(III) and As(V). Further, to address such limitations in this current study we were able to separate As(V) from As(III) within 5 h. In addition, to provide sole solution a device was fabricated to extract As(V) in the field studies which displayed outstanding efficiency of 99.7 ± 0.2%. The extracted samples was tested in AAS to differentiate between oxidation states of the arsenic species and these important results are supportive in finding out the redox potential of water and for other geochemical explorations.


Assuntos
Arsênio , Polímeros , Polímeros/química , Membranas Artificiais , Água , Íons
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 276: 121197, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35381439

RESUMO

Biowaste based nanoadsorbents have gained much attention in the recent times for wastewater decolourization owing to their low cost, high surface area and high adsorption capacities. In the present research, garlic peel based nanoparticles (GCNP) were synthesized at different temperatures by a one step pyrolytic green approach for the effective removal of cationic dye, malachite green from the aqueous medium. The surface properties of Garlic nanoparticles were elucidated by N2 adsorption- desorption and all the GCNP samples were found to exhibit Type IV(a) isotherm indicating the presence of mesopores in carbon matrix. Using BET calculations, highest surface area (380 m2/g) was obtained for GCNP synthesized at 1000 ◦C. Characterization of nanoparticles was done by XRD, EDAX, SEM and FTIR studies before and after the dye treatment. Adsorption studies conducted using different parameters like contact time, concentration and pH and dosage of adsorbent showed removal efficiency above 90% for the contact time of 70 min. Best adsorption experimental results were obtained for GCNP synthesized at 1000 °C ascribable to its high surface area, higher total pore volume (0.26 cm2/g) and higher carbon content. Four adsorption isotherm models were used to validate batch equillibrium studies and the results showed data in good agreement with Langmuir and Freundlich isotherms with maximum Langmuir adsorbtion capactiy to be 373.7 mg/g. Kinetic modelling of the data showed best fit with the Pseudo second order model with rate constant value of 48.726 g mg-1 min-1. Regenerative studies were conducted conducted upto 6 cycles. Also the GC nanoparticles were tested for their compatibility in membrane form wherein, removal efficiency results were obtained for GCNP anchored in polyvinyl difluoride (PVDF) and polysulfone (PSF) membrane matrix for dye adsorption.


Assuntos
Alho , Nanosferas , Carbono , Concentração de Íons de Hidrogênio , Cinética , Corantes de Rosanilina , Água/química
6.
Chemosphere ; 287(Pt 1): 131976, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34438207

RESUMO

Herein, low-cost diatomite (DE) and bentonite (BE) materials were surface modified with Ni-Fe layered double hydroxide (LDHs) (represented as NFD and NFB respectively), using a simple co-precipitation procedure for the removal of methyl orange (MO) dye from water. The adsorbents of both before and after MO adsorption have been studied by XRD, N2 adsorption-desorption isotherm, FTIR, FESEM-EDX and XPS characterization. The zeta potential analysis was used to observe the surface charge of adsorbents within the pH ranges of 4-10. The MO removal efficiency was significantly improved after LDHs modification, showing a 94.7% and 92.6% efficiency for NFD and NFB at pH 6, respectively. Whereas bare DE and BE have shown removal efficiency of 15.5% and 4.9% respectively. The maximum adsorption capacities of NFD and NFB using the Langmuir isotherm model were found to be 246.9 mgg-1 and 215.9 mgg-1 respectively. The designed NFD showed high selectivity towards anionic-based dyes from water and also the effect of salts shows the dye removal percentage was increased and decreased for the addition of Na2SO4 and NaCl, respectively. The reusability of NFD and NFB have been studied for a maximum of five cycles and they can remove MO up to four cycles. Therefore, the designed adsorbents can be very effective towards the removal of MO from water and they may be useful for dye-based wastewater treatment.


Assuntos
Dióxido de Silício , Poluentes Químicos da Água , Adsorção , Compostos Azo , Hidróxidos , Cinética , Poluentes Químicos da Água/análise
7.
J Hazard Mater ; 416: 125941, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492868

RESUMO

Herein, we demonstrate the use of cerium (Ce)-UiO-66 metal organic framework (MOF) for the removal of a variety of potentially toxic pollutants. The Ce-UiO-66 MOF, with similar framework topologies to Zr-UiO-66, has not been explored for its adsorptive properties in water remediation. The replacement of Zr metal center with Ce yields a MOF that can be synthesized in shorter durations with lesser energy consumptions and with excellent multipollutant adsorption properties. Further, the Ce-UiO-66 MOF was also studied for its adsorption abilities in the binary component system. Interestingly, the adsorbent showed higher adsorption capacities in the presence of other pollutants. Removal studies for other potentially toxic anionic and cationic dyes showed that the Ce-UiO-66 MOF has a wide range of contaminant removal abilities. Investigations of individual adsorption capacities revealed that the Ce-UiO-66 MOF has a maximum adsorption capacity of 793.7 mg/g for congo red (CR), 110 mg/g for methylene blue (MB), 66.1 mg/g for fluoride (F-), 30 mg/g for Cr6+ and 485.4 mg/g for the pharmaceutical waste diclofenac sodium (DCF). To imply the practical applications of the Ce-UiO-66 MOF we have also demonstrated an adaptable filter that could separate all the potentially toxic pollutants.


Assuntos
Cério , Estruturas Metalorgânicas , Poluentes Químicos da Água , Purificação da Água , Adsorção , Cério/toxicidade , Poluentes Químicos da Água/análise
8.
Adv Colloid Interface Sci ; 282: 102198, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32579950

RESUMO

The presence of toxic pollutants such as dyes and metal ions at higher concentrations in water is very harmful to the environment. Removal of these pollutants using diatomaceous earth or diatomite (DE) and surface-modified DE has been extensively explored due to their excellent physio-chemical properties and low cost. Therefore, naturally available DE being inexpensive, their surface modified adsorbents could be one of the potential candidates for the wastewater treatment in the future. In this context, the current review has been summarized for the removal of both pollutants i.e., dyes and metal ions by surface-modified DE using the facile adsorption process. In addition, this review is prominently focused on the various modification process of DE, their cost-effectiveness; the physio-chemical characteristics and their maximum adsorption capacity. Further, real-time scenarios of reported adsorbents were tabulated based on the cost of the process along with the adsorption capacity of these adsorbents.

9.
Chemosphere ; 238: 124692, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31545214

RESUMO

Diatomaceous earth or diatom (DE) are naturally available and low cost micro particles with distinct porous structure were used as an adsorbent for the removal of a hazardous dye, Eriochrome Black T (EBT). The surface modification of these DE were performed by sol-gel and hydrothermal methods to obtain a series of adsorbents such as diatom-ceria (DC), diatom-silica xerogel (DX), and diatom-silica xerogel-ceria (DXC). A cauliflower like morphology structure of ceria was observed on DE and DX. The adsorption performance of EBT was conducted by varying various parameters such as pH, adsorbent dosage, initial concentration, contact time and ionic strength. The materials DE, DC, DX and DXC showed the EBT removal efficiencies of 52, 77, 20, and 93%, respectively. The maximum adsorption capacity (qm) of DE, DC, DX and DXC was found to be 13.83, 23.64, 0.2 and 47.02 mgg-1 for the adsorption of EBT, respectively. The selectivity of EBT towards DXC was evaluated by treating a mixture of anionic dyes. The dye removal experiments was performed in presence of inorganic salts, however the presence of these salts did not affect the removal efficiency of DXC. Furthermore, the reusability of DXC was studied by recycling it up to 5 times and even at 5th cycle a removal efficiency of ∼66.8% was found. Thus, these studies demonstrate that the DXC material could be a promising candidate for the removal of EBT via adsorption for real time application in water treatment.


Assuntos
Compostos Azo/análise , Corantes/análise , Terra de Diatomáceas/metabolismo , Diatomáceas/metabolismo , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Adsorção , Porosidade , Reciclagem , Sílica Gel/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...